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Abstract: Many methods in the numeric calculus resolving nonlinear algebraic or differential equation but 

ignore some behavior of these problems. Same aspects can conjure to the fractal iterative techniques. In this 

paper work is performed a critical analysis about iterative fractal techniques which can conduct to various 

implemented applications. Study of the nonlinear equation, treated into iterative techniques, makes the subject of 

this paper. It consists in a short revue of the most important principles of the fractal calculus and complexity 

applications in fundamental sciences and technologies. If trying to solve the equation z4-1=0  in the complex 

plan, we can obtain the Newton's fractal. And this is not the single case when a numeric method for solving 

nonlinear algebraic equations has same strange behavior. If we modify the fractal logistic equation with the 

goal to perform an appropriate model for some physical applications, we can obtain some interesting and 

amazing results. 

Key words: fractal, attractor, map, set, iterative, complexity, form. 

 

 1. INTRODUCTION 

 

Many methods in the numeric calculus resolving nonlinear algebraic or differential equation 

but ignore some behaviour of these problems. Since fractal analysis developing were 

identified a lot of strange features in the solution of same equations.  

A very interesting phenomenon occurs in the solution of the following set of nonlinear 

differential equations called the Lorez system [5]: 
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This system arises from problems related to fluid convection and to weather forecasting. 

When the r parameter lies in the 24.7<r<145 interval, the solution does not converge to a 

fixed point in the t→∞ limit, nor is there a limit cycle, but the solution keeps moving around 

in a finite area. The limit set of the orbit at t→∞ is generally called the attractor. It has been 

confirmed numerically that the Lorenz attractor system has infinitely many folding.  

Other strange attractors have been found in many systems with few degrees of freedom. The 

following system, called the Rössler system [5], is famous for showing that chaos can be 

produces with only one nonlinear term: 
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Attractors of ordinary differential equations with the degree of freedom less than 2 are limited 

to either a fixed point or a limit cycle, and have proved not to be strange. However, even in 

system with only two variables, chaos can be found if the system evolves discretely. A good 

example in this sense is the strange attractor of the Hennon map. The equations system in this 

case is: 
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Strange attractors in systems of ordinary differential equations also usually have fractal 

properties. By imagining a plane in the phase space and observing only the points where the 

orbits pass through the plane, the dynamical systems can be reduced to a discrete map called 

the Poincaré map. The Poincaré map of the Rössler system, like the Henon map, is self-

similar and the Rössler attractor is also fractal. 

 

 2. STRANGE ATTRACTORS 

 

Let us consider a simple nonlinear map called logistic map or bifurcation map: 

    4r0),x1(rxx nn1n ≤≤−=+        (4) 

This is an example of iterative method application on nonlinear function. In the first regard it 

is a classical and very knowledge path to resolving without problems same numeric analysis 

applications. However, we can observe that the asymptotic behaviour of xn depends strongly 

on r parameter: 

for 0≤ r <1, xn decrease as n and xn approach 0; for 1≤ r ≤ 2, xn monotonically approaches 1-

1/r; for 2< r ≤ 3, xn approaches 1-1/r with oscillations; for 3< r ≤ 3.449, xn is gradually 

approaches period motion of period 2; for 3.449< r ≤ 4, the system become uncontrolled. 



The set of attractors of xn is shown in figure 1. 
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Historically, the logistic map was obtained from the logistic equation, which describes the 

growth of a population in a closed area: 
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If we put this equation into a difference equation forms: 

          nn
n1n u)hu(

t
uu

−=
−+ ε

Δ
       (6) 

we obtain the logistic map if we change the variables as: 
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The solution of (5) can be obtained analytically for any initial condition u(0)>0. It 

monotonically approaches a fixed point ε/h. By contrast, the difference equation for large 

interval Δt and the logistic map behave quite differently, producing chaos. This kind of 

discrepancy between the solution of a differential equation and that of its difference equation 

appears in any nonlinear system if the difference interval is sufficiently large [1]. Hence we 

have to be careful when we numerically solve a differential equation by using a difference 

equation. 

If we modify the logistic equation in the form: 
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we can observe an interesting result about the map equation (figure 2). This result makes 

subject of some original studies focused on the numeric methods in complexity calculus. 

If trying to solve the equation z4-1=0  in the complex plan, we can obtain the Newton's fractal 

[4] which shown like in figure 3. And this is not the single case when a numeric method for 

solving nonlinear algebraic equations has same strange behaviour.   
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Fig. 1 Bifurcation diagram of logistic map for 3≤r≤4 
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Fig. 2 Bifurcation diagram of modified logistic map for 0.01≤r≤4 

 

 

 

 

 

 

 

 

 3. FRACTALS BY MAPS 

or a given map [2]: 
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the set of initial points {xo} whose iterated points never diverge (|xn|<∞ for any n) is called 

Julia set. For many maps, the Julia sets are known to be fractals. A good example is the 

following complex logistic map: 
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In the same way, equation: 
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conducts to other fractal. To set of comp ters b such that successive iterates of z=0 

under g(z) do not tend to ∞ is named the Mandelbrot set. This set has a fractal border. 

When we solve an algebraic equation numerically by Newton's method, we have to i

map similar to (11). If the equation has several solutions, an initial value for the iteration will 

be attracted to one of the solution. The boundary of the set of points that finally converge to 

one of the solution becomes a fractal. Two initial points that are arbitrarily close can approach 

distinct solutions, if they start close to this boundary. 

Another simple method to construct fractals is provid

the invariant set of a single contraction map is a point. However, for two or more contraction 

maps the invariant set is the set X which satisfies: 
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the [0,1] interval. 
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In o s are:  the c mplex plane we have the Koch curve if the mapping
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where z  denotes the complex conjugate of  z. 

Thus all regular (non-random) fractals can be expressed in this formalism, which because its 

nt in future. 

Consider a 2 or 3 dimensional lattice and distribute points randomly on it with p probability. 

ey are regarded as connected. By changing the 

s as:  

simplicity is expected to become more importa

 

 4. RANDOM CLUSTERS  

 

If neighbouring sites are occupied by points, th

probability p of the occupation of sites we can estimate the critical probability pc and fractal 

dimension of clusters. 

The fractal dimension of clusters is calculated in the following way. We define the mean 

radius of clusters of size 
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the average over all s-clusters. When R  is proportional to a power of s, the clusters are 

The result of simulations show that (16) holds at 

estimated as 1.9 (2 dimensional lattice) and 2.5 (3 dimensional lattice) [3]. This value in the 2 

Ising model [4]. In this model, spins which 

e only the value +1 or -1 are arranged on a lattice. The total energy (or Hamiltonian) E 

−=−

where ri denotes the distance between ss and the i-th point, and <•> indicates 

s

statistical fractals with dimension D which satisfies the relation: 
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p=pc and the fractal dimensions are 

dimensional cases agrees with the experimental value. 

 

 5. CLUSTERS IN SPIN SYSTEMS 

 

The best-know model of magnetic material is the 

can tak

of the system is given by the equation: 
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Here, ΣΣ denotes summation over nearest neighbour sites. J is the coupling constant and H is 

the external field. In thermal equilibrium, the probability of occurrence of the state with total 

energy E is given by: 

                (18) Tk/E Be~W −

where kB is Boltzmann's constant and T denotes temperature. 

In both 2 and 3 dimensional space, the Ising model is known to show a phase transition at a 

critical temperature, Tc. For T<Tc , symmetry is spontaneously broken and most spins take the 

same value, which indicates that the system is ferromagnetic. On the other hand when T>Tc , 

each spin takes the value +1 or -1 nearly independent of neighbouring spins and the average 

of spin vanishes, which shows that the system is demagnetised. At the critical point T=Tc , the 

characteristic size of clusters of the same spin diverges and distribution of the clusters 

becomes fractal. The fractal dimensions of the clusters are estimated to be 1.88 in 2 

dimensional space and 2.43 in 3 dimensions. 

 

 6. CONCLUSION 

 

In the complexity theory is notable involving of the iterative functions in behaviour of fractal 

pattern. Study of the nonlinear equation, treated into iterative techniques, makes the subject of 

this paper. It consists in a short revue of the most important principles of the fractal calculus 

and complexity applications in fundamental sciences and technologies. Were been presented 

also some new ideas of analysis to iterative relations like as named the modified logistic 

equation. On this relation can be performing some studies with valuable results in numeric 

analysis area. In bifurcation diagram of logistic map (figure 1) are presented results of the 

own program run, that is written under C++ programming language. 
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