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Abstract: For studying dynamic behavior of gear trains, description of the inner excitation properties is needed. 
Kinematic excitation, due to meshing irregularities and profile modifications will be studied, and described by 
an adequate mathematical model. Dynamic excitation component, introduced mainly by the variable number of 
tooth pairs in contact, will be combined with the kinematic excitation function, into a general excitation function, 
called as reduced stiffness function. 
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1. INTRODUCTION 
 

Dynamical behavior and noise characteristics of gear transmissions are influenced not only by 
the gears, as elastic elements with mass, but the gears, as active vibration exciting elements 
(inner excitation) contribute considerably to these features. Inner excitation comes partly from 
kinematical, partly from dynamical effects. The kinematic excitation component is due to the 
mesh irregularities introduced by deviations of real profiles from the ideal one (manufacturing 
errors, intended profile modifications, as tip relief etc.), and by tooth deformations under load. 
Dynamic excitation is due to the variation of the resulting mesh stiffness of teeth in contact, 
during rolling down. This variation comes from the variation of tooth contact point in tooth 
height direction, the non-linear stiffness characteristics of teeth [5], and the variation of the 
number of teeth during contact. These two kinds of excitation effects influence the vibration 
characteristics of gears in close interaction with each other. 
The tip relief [4], for example, has primary effect on kinematic excitation, but, as secondary 
effect, influences the “contact ratio”, which will be load dependent, consequently, the average 
mesh stiffness varies with the load. Most significant influence can be archived with “long tip 
relief”, where the theoretical contact ratio at zero load is less then one.  
Further on, mesh irregularities will be treated, kinematic excitation component formulation, 
its combination with dynamic component will be presented. Some conclusions will be 
discussed in case of long tip relief. 

2. NOMENCLATURE  

A,E - end points of contact of profile pairs, on the contact line, B,D- single tooth contact 
points, C- pitch point, Ni- points of tangency of the pressure line, with the base circle of index 
i, FN  - normal force on teeth in mesh, h(ϕ1) – clearance, i(...) - ratio function, in - nominal 
ratio, J1, J2 - moments of inertia, Kj - damping coefficient on j-th tooth pair, n1 - number of 



revolution of driver, ra1, ra2 - addendum circle radii of gear 1, 2, rb1, rb2 - base circle radii of 
gear 1, 2, rbl1, rbl2 - base circle radii of relief profile of gear 1, 2, rl1, rl2 - inner radii of relief 
profile on gear 1, 2, rw1, rw2 rolling circle radii of gear 1, 2, T1, T2 - torque on gear 1, 2, z1,z2 - 
number of teeth of gear 1,2, ( )1ϕs  - spring stiffness of one tooth pair, wj - deflection of one 
tooth pair in pressure line direction, αw - pressure angle on the rolling circle, ϕ1,ϕ2, - angle of 
rotation of driver and gear, ϕ2n - nominal angle of rotation of gear, γ1b - central angle of one 
pitch on pinion, ω1 - tooth angular frequency, Ω - rotation angle on the pinion of the period of 
kinematic excitation function. 
 

3. ANALYTIC FORMULATION OF INNER EXCITATION 
 
Mathematical formulation of kinematic excitation component can be carried out by the 
application of δj(ϕ1) contact functions, defined for each profile pair combinations as 
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Fig. 1. Definition of contact function (a), series of contact functions in case of ideal gears (b) 
 

 δj(ϕ1)=rb2.( ϕ2n -ϕ2 ). So, δj(ϕ1) gives the deviation of real angular position of the driven gear 
related to its nominal position, measured in length on the pressure line, in the function of 
pinion angular position, in case of contact of the j-th profile pair, under zero load, Fig. 1. a. (It 
is supposed, that the neighboring profiles are taken out, consequently, the gear position is 
defined by the j-th profile pair.) In case of ideal contact of ideal gears, δj(ϕ1)=0 (Fig. 1.b.) on 

kkEA  pressure line segments, for k=1,2,..j..In case of real gears with real profiles, δj(ϕ1) ≠0 
generally. Similarly, for profile with tip relief, δj(ϕ1) ≠0 on the contact of relief zone, even in 
case of ideal conditions [2,3].  
In case of meshing under load, due to the tooth deflection, the gear lags back related to its 
nominal angular position. So, the following profile pair enters into contact already before the 
point A, and the forgoing one, remains in contact even after the point E. In these contact 
zones, non-conjugate profile pairs are meshing (contact on the top land edge), hence they will 
be called as irregular contact zones, Fig. 2.  
 
3.1. Meshing on the irregular contact zone 
Let us consider the mesh position represented on Fig. 2.b., with directions of rotation of Fig. 
2.a., for case of in=z2/z1>1. The profile pair 1.,2., are in position of just before entering into 
contact. Angular position of gears 1., 2. are defined by the rotational angles of points on the  
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Fig. 2. Meshing on the irregular contact zone 
 

rolling circle of profiles 1., 2., so ϕ2n=ϕ1P/in,. It is supposed, that the top land edge of gear is 
rounded off with circle of radius R, having its center point K on a circle of radius rk  
Supposing the pinion is fixed, contact of profiles 1., 2. can be archived by rotating the gear in 
counter-clock wise, with angle Δϕ2 , ϕ2=ϕ2n+Δϕ2, and δj(ϕ1P)= rb2 Δϕ2, is the value of contact 
function to be determined. Meshing of profiles 1, 2 can take place, if the gear is lagging 
behind, due ex. by deformations under load on regularly meshing teeth, or due to 
manufacturing errors.  
Let us suppose, that in the given position of pinion, contact will take place in point P of 
profile 1., with point K being in position of K’. One can write than a set of geometric 
equations, see [1], for the calculation of unknown parameters of contact of profiles 1, 2, and 
for calculation of actual ratio, i(ϕ1P).  
Fig. 3. a. represents the variation of ratio, in function of ϕ1. On irregular zone before point A 
(ϕ1<ϕ1A), the instantaneous ratio is less than the nominal one, hence it is relatively multiplier. 
In a similar way, one can conclude, that on irregular zone after point E, instantaneous ratio is 
bigger than the nominal one: the train is relatively decelerator. Values of contact function can  
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Fig. 3. The ratio (a) and the contact function, for ideal gears, with irregular contact zones 

 

be calculated either by calculating the length on the pressure line corresponding to angle with 
which the gear lags back, or by integrating the ratio function [1]. 
 
 
 



3.2. Contact function for profiles with tip relief 
For gears with long tip relief [4], the tooth profile is composed of two different involute 
curves [4], consequently the ratio is different on the contact zones of the two profile curve 
parts. On Fig. 4. ratio function (a) and contact function (b) are represented for case of long tip 
relief. The irregular zones are not shown. 
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Fig. 4. Ratio (a) and contact function (b), , series of contact functions (c), contact function of 
gear train (d), for gear with tip relief [1] 

On Fig. 4.c., series of contact functions with irregular zones are represented, for gears with 
long tip relief. The rolling down under load, resulting in a constant lagging back of gear with 
value on the pressure line of Δσ = rb1.ϕ1 -rb2.ϕ2=const.>0, can be represented. with a straight 
line, Fig. 4. c. If Δσ(ϕ1)>δj(ϕ1), then the j-th tooth pair is in contact. The deflection of a tooth 
pair, being in contact at a given angle ϕ1 , will be wj =Δσ -δj(ϕ1). One can follow well the 
number of tooth pairs in contact, at a given Δσ, in function of ϕ1., Fig. 4. c. In case of rolling 
down with zero load, angular position of the gear will be determined by tooth pair in contact 
position, giving the smallest lagging back of the driver: ( ) ( )[ ]1

..1
1 min ϕδϕδ j

kj=
= , where δ(ϕ1) is the 

contact function of gear train, Fig. 4.d. It is equal with the standardized kinematic error curve.  

3.3. The generalized load dependent contact ratio function εt(Δσ) 
Let us consider the contact function δj(ϕ1), defined on interval ϕ1 j I<ϕ1<ϕ1 j S, and let us 
introduce the indicator function [1]: 
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where n is the number of profile pairs in contact. εt (Δσ). gives the average number of profile 
(tooth) pairs in contact, during rolling down on Φ. Hence the number of tooth pairs in contact 
is load dependent, see Fig. 4.c., εt(Δσ) is load dependent as well. So, εt is called as real 
contact ratio. For case of the ideal rolling down with zero load of ideal normal gears, with 
Φ=γ1b , applying Eq. (2) (Fig. 5): 
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Multiplying the nominator and denominator in Eq. (3) with rb1 , one can obtain the basic 
geometric definition of contact ratio εα . 
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Fig. 5. The εt (=εα ) real contact ratio for ideal gears with zero load 

 
4. THE GENERAL EXCITATION FUNCTION 

In case of meshing under load, besides the kinematic component, inner excitation properties 
of gears are influenced by the variation of tooth stiffness and the variation of real contact 
ratio, i. e. by the actual number of teeth in contact. The two kind of effects appear in close 
interaction. Their integrated treatment can be carried out by introducing a two variables 
reduced stiffness function ( )σϕ Δ;ˆ 1s  as follows: 
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Fig. 6. Geometric interpretation of reduced                  Fig. 7. Reduced stiffness and mesh  
                stiffness function                                        stiffness function for gears with tip relief 



In case of non-linear single tooth stiffness curve [5] Eq. (4) is formally more complex, 
because of the force on one tooth pair, can’t be expressed simply as ( ) jjNj wsF .1ϕ= . 
Geometric interpretation of reduced stiffness function is represented on Fig. 6. for profiles 
with tip relief, meshing on the relief profile segment. 
On left hand side of Fig. 7. one period of reduced stiffness function is represented for ideal 
gears with long tip relief of number of teeth 53/65, in case of rolling down with constant line 
pressure values, assuming non-linear single tooth pair stiffness characteristics. Curves reflect 
well the considerable variation of inner excitation effects. At line pressures of 500-600N/mm, 
the variation of excitation is rather small, indicating the optimum load range in case of long 
tip relief.  
On right hand side of Fig. 7. the ( )σΔϕ ;1s ≠ ( )σΔϕ ;ˆ 1s  mesh stiffness function is represented. 
( )σΔϕ ;1s  [2,3] is the sum of single tooth pair stiffness, and varies as the real contact ratio 

varies. It is considerably load dependent as well. One can say, that the mesh stiffness cγ  
applied in normal gear calculations [4] is the integral mean of ( )σΔϕ ;1s , for case of ideal 
gears with ideal rolling down. Hence, ( )σΔϕ ;1s  is the generalization of mesh stiffness. 
Further on, one can follow well the variation of real contact ratio, as the load varies, 
indicating an increasing stiffness of gear contact with increasing load.  
 
5. CONCLUSIONS  

Experience shows, that vibration and noise characteristics of gear trains are strongly 
influenced by intended profile modifications in height and length direction, manufacturing 
precision and interaction of gear induced excitations and vibration characteristics of other 
elements of transmissions. For more realistic simulation of dynamic behavior of trains, 
detailed study and adequate mathematical formulation and description of excitation effects is 
needed. It was shown, that traditional definitions of some important parameters as contact 
ratio, mesh stiffness should be generalized for enabling the treatment of load dependency, 
which is considerably especially for gears with long tip relief. Further on, mathematical 
formulation of kinematic excitation and integrated interpretation of inner excitation effects 
allows the taking into consideration of important parameters, as manufacturing errors, profile 
modifications etc.  
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