THE RIGIDITY MATRIX OF THE DOUBLE EFFECT BALL BEARINGS

Rezmires Daniel¹, Racocea Cezar²
¹S.C. FORPRES S.A. Iasi, ²Technical University “Gh. Asachi” of Iasi

Abstract: An analytical formulation to simulate the internal mechanical interactions in the double effect ball bearings is presented. The individual constructive particularities of the double effect ball bearings were considered. Many scientists consider that there are no differences between the cases when the inner ring or outer ring is considered rigid, but, these differences exist and are evidenced if the rigidity matrix is correctly constructed in 5 DOF.

Key words: Double Effect Ball Bearings, Rigidity Matrix, Outer Ring Rigid (ORR), Inner Ring Rigid (IRR)

1. INTRODUCTION

The load distribution in double effect ball bearings depends on bearing geometry and the boundary conditions. We consider two variants of boundary conditions. These cases correspond to outer ring rigid case, named "ORR" or to the inner ring rigid case named "IRR". To describe these differences the "Rin" and "Rou" parameters respectively were introduced.

2. ANALITICAL APPROACH

Figures 1, 2, 3 and 4 show some particularities of the double effect ball bearings. For the ORR and IRR cases, the external load vector and the ring displacements, according to Figures 1 to 4, are: \(\{ F \} = \{ F_x, F_y, F_z, M_y, M_z \} \) and \(\delta = \{ \delta_x, \delta_y, \delta_z, \gamma_y, \gamma_z \} \). In that analysis the double effect ball bearings presented in Figs 1-4, were abbreviated as DBB1, DBB2, DBB3 and DBB4. An "r" index was introduced to describe the bearing rows, so "r = 1, 2". The curvature centres are named Ow, Oi, Oe. To each configuration an inertial system OXYZ is attached. The system origin is the geometrical centre of the inner ring. Each rolling element has two degrees of freedom.

Fig.1. Characteristics of the DBB1 bearing type

Fig.2. Characteristics of the DBB2 bearing type
The differences between the "ORR" and "IRR" concerning the curvature centre displacement are shown in Figs. 5 to 8.

The effect of the ring displacement is evidenced with the < ' > index as following: for the "ORR" case, the O_i point becomes $<O'_i>$ and for the "IRR" case O_e becomes $<O'_e>$.

The load distribution in the DBB 1-4 in the "ORR" and "IRR" cases is function of the O_w, O_i, and O_e point displacements. To create the rigidity matrix, the following functions were constructed: $\text{sgn}(r) = \{-1,1\}$, for $r=\{1,2\}$; $\psi = \psi(r,j)$ to describe the rolling element position.

Fig.3. Characteristics of the DBB3 bearing type

Fig.4. Characteristics of the DBB4 bearing type

Fig.5. DBB1 : ORR and IRR displacements

Fig.6. DBB2 : ORR and IRR displacements

Fig.7. DBB3 : ORR and IRR displacements

Fig.8. DBB4 : ORR and IRR displacements
As function of the studied case “ORR” or “IRR” and the bearing type, the α_0 angle was introduced (see figs. 1-4). The misalignment effect is taken into account with:

$$\alpha(r,j) = \alpha_0 + \text{sgn}(r). \gamma_v \cos(\psi) + \gamma_v \sin(\psi)$$

The static contact deformation for the (r,j) ball from the DBB1-4 structure corresponding to the "ORR case" and "IRR case", is given as:

$$\delta(r,j) = \sqrt{x(r,j)^2 + x(r,j)^2} - l_{oi} - l_{oe}$$

where:

- in the "ORR" case:

 $$z(r,j) = A.(l_{oi} + l_{oe}) \cos(\alpha_1) + \delta_z \cos(\psi) + \delta_y \sin(\psi) + [\cos(\alpha_0) - \cos(\alpha(r,j))]$$
 $$x(r,j) = B.(l_{oi} + l_{oe}) \sin(\alpha_1) + \delta_x + [\sin(\alpha_0) - \sin(\alpha(r,j))]$$

- in the "IRR" case:

 $$z(r,j) = A.(l_{oi} + l_{oe}) \cos(\alpha_1) + \delta_z \cos(\psi) + \delta_y \sin(\psi) + \cos(\alpha_0) - \cos(\alpha(r,j))$$
 $$x(r,j) = B.(l_{oi} + l_{oe}) \sin(\alpha_1) + \delta_x + \cos(\alpha_0) - \sin(\alpha(r,j))$$

with:

"A" and "B" parameters, form Table 1

<table>
<thead>
<tr>
<th>Bearing type</th>
<th>$r=1$</th>
<th>$r=2$</th>
<th>$r=1,2$</th>
<th>$r=1,2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBB1</td>
<td>α_1</td>
<td>1</td>
<td>1</td>
<td>α_1</td>
</tr>
<tr>
<td>DBB2</td>
<td>α_1</td>
<td>1</td>
<td>-1</td>
<td>α_1</td>
</tr>
<tr>
<td>DBB3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DBB4</td>
<td>α_0</td>
<td>1</td>
<td>1</td>
<td>α_0</td>
</tr>
</tbody>
</table>

and

- $l_{oe}=R_o-D_{o}/2-S_d/4$, represents the distance between the Oe and Ow points
- $l_{oi}=R_i-D_{o}/2-S_d/4$, represents the distance between the Oi and Ow points
- R_o,i outer and inner raceway radius
- S_d represents the total diametric clearance of the bearing

The contact angle for (r,j) rolling element is given as:

$$\alpha_c(r,j) = \alpha_z(r,j) = \arctan \left(\frac{x(r,j)}{z(r,j)} \right)$$

The contact load for the (r,j) ball is:

$$Q(r,j) = K_{ech} \delta(r,j)^n$$
where:
\[K_{\text{ech}} \] represents the equivalent rigidity for the point contact type.

The bearing equilibrium equations corresponding to the "ORR" and "IRR" cases are:

\[F_x = \sum \sum Q(r, j) \cos(\alpha_r(\alpha, j)) \cos(\psi(\alpha, j)) = \sum \sum F_x(r, j) \] \hspace{1cm} (9)

\[F_y = \sum \sum Q(r, j) \cos(\alpha_r(\alpha, j)) \sin(\psi(\alpha, j)) = \sum \sum F_y(r, j) \] \hspace{1cm} (10)

\[F_z = \sum Q(l, j) \sin(\alpha_l(l, j)) + C \sum Q(2, j) \sin(\alpha_2(2, j)) = \sum F_z(l, j) + C \sum F_z(2, j) \] \hspace{1cm} (11)

\[M_x = D \sum \left[\sum F_l(l, j) b_x(l, j) + \sum F_2(l, j) b_x(2, j) \right] + D \sum \left[\sum F_l(l, j) b_y(2, j) + \sum F_2(l, j) b_y(2, j) \right] \] \hspace{1cm} (12)

\[M_y = D \sum \left[\sum F_l(l, j) b_y(l, j) + \sum F_2(l, j) b_y(2, j) \right] + D \sum \left[\sum F_l(l, j) b_z(2, j) + \sum F_2(l, j) b_z(2, j) \right] \] \hspace{1cm} (13)

where:

- \(Q(j) \) represents the load acting on the \((r, j)\) roller element;
- \(b_x, b_y, b_z \) represents the distance from the point of contact inner raceway - ball to the centre of inertial system in "ORR" case. For "IRR" case \(b_x, b_y, b_z \) represents the distance from the point of contact outer raceway - ball to the centre of inertial system.

For "ORR" case:

\[b_x(r, j) = B l + \left(\delta_x(r, j) + 1_{\alpha_i} - \frac{D_x}{2} \right) \sin(\alpha_x(r, j)) \] \hspace{1cm} (14)

\[b_y(r, j) = \left[\frac{C l}{1_{\alpha_i}} + \left(\delta_y(r, j) + 1_{\alpha_i} - \frac{D_y}{2} \right) \cos(\alpha_x(r, j)) \right] \sin(\psi(r, j)) \] \hspace{1cm} (15)

\[b_z(r, j) = \left[\frac{C l}{1_{\alpha_i}} + \left(\delta_z(r, j) + 1_{\alpha_i} - \frac{D_z}{2} \right) \cos(\alpha_x(r, j)) \right] \cos(\psi(r, j)) \] \hspace{1cm} (16)

with:

- \(B l \) - represents the distance between the centre of curvature of the inner raceway and the origin of the inertial system along the \(OX \) axis.
- \(C l \) - represents the distance between the centre of curvature of the inner raceway and the origin of the inertial system along the \(OZ \) axis.

For "IRR" case result:

\[b_x(r, j) = B l + \left(\delta_x(r, j) + 1_{\alpha_i} + \frac{D_x}{2} \right) \sin(\alpha_x(r, j)) \] \hspace{1cm} (17)
\(b_{x}(r,j) = \left[C_{1} + \left(\delta_{x}(r,j) + l_{x} + \frac{D_{w}}{2} \right) \cos(\alpha_{x}(r,j)) \right] \sin(\psi(r,j)) \) \((18) \)

\(b_{y}(r,j) = \left[C_{1} + \left(\delta_{y}(r,j) + l_{y} + \frac{D_{w}}{2} \right) \cos(\alpha_{y}(r,j)) \right] \cos(\psi(r,j)) \) \((19) \)

- **BI** - represents the distance between the centre of curvature of the outer raceway and the origin of the inertial system along the \(OX \) axis.
- **CI** - represents the distance between the centre of curvature of the outer raceway and the origin of the inertial system along the \(OZ \) axis.

\[\delta(r,j) = \delta(r,j)(K_{o}/K_{I})^{1/n} \] \((20) \)

3. THE RIGIDITY MATRIX FOR DBB 1-4 IN THE "ORR" AND "IRR" CASES

The common rigidity matrix for DBB1-4 depends on the \((r,j) \) ball rigidity. That matrix "M", respects the "ORR" and "IRR" case.

\[
M = \begin{bmatrix}
\partial F_a / \partial x & \partial F_a / \partial y & \partial F_a / \partial z & \partial F_a / \partial \gamma_x & \partial F_a / \partial \gamma_y & \partial F_a / \partial \gamma_z \\
\partial F_r / \partial x & \partial F_r / \partial y & \partial F_r / \partial z & \partial F_r / \partial \gamma_x & \partial F_r / \partial \gamma_y & \partial F_r / \partial \gamma_z \\
\partial F_y / \partial x & \partial F_y / \partial y & \partial F_y / \partial z & \partial F_y / \partial \gamma_x & \partial F_y / \partial \gamma_y & \partial F_y / \partial \gamma_z \\
\partial F_z / \partial x & \partial F_z / \partial y & \partial F_z / \partial z & \partial F_z / \partial \gamma_x & \partial F_z / \partial \gamma_y & \partial F_z / \partial \gamma_z \\
\partial M_x / \partial x & \partial M_x / \partial y & \partial M_x / \partial z & \partial M_x / \partial \gamma_x & \partial M_x / \partial \gamma_y & \partial M_x / \partial \gamma_z \\
\partial M_y / \partial x & \partial M_y / \partial y & \partial M_y / \partial z & \partial M_y / \partial \gamma_x & \partial M_y / \partial \gamma_y & \partial M_y / \partial \gamma_z \\
\partial M_z / \partial x & \partial M_z / \partial y & \partial M_z / \partial z & \partial M_z / \partial \gamma_x & \partial M_z / \partial \gamma_y & \partial M_z / \partial \gamma_z
\end{bmatrix}
\] \((21) \)

To assure a simplified writing for the \(M \) matrix components, the \(X \) list is introduced. The \(X \) list is given as:

\[X = (r,j,u_x,u_z) \] \((22) \)

With that notation the rigidity matrix components are:

\[
\frac{\partial F_a}{\partial \xi} = \sum_r \sum_j \frac{\partial [K, \delta_r(X)^{\alpha}, \sin(\alpha_r(X))]}{\partial \xi}
\] \((23) \)

\[
\frac{\partial F_r}{\partial \xi} = \sum_r \sum_j \frac{\partial [K, \delta_r(X)^{\alpha}, \cos(\alpha_r(X)), \sin(\psi(r,j))]}{\partial \xi}
\] \((24) \)

\[
\frac{\partial F_y}{\partial \xi} = \sum_r \sum_j \frac{\partial [K, \delta_r(X)^{\alpha}, \cos(\alpha_r(X)), \cos(\psi(r,j))]}{\partial \xi}
\] \((25) \)
\[
\frac{\delta M_j}{\delta E} = \frac{\delta \sum_{A} \sum_{(r,j)} F_i(X)b_i(r,j) + \delta \sum_{A} \sum_{(r,j)} F_i(X)b_i(r,j)}{\delta [\theta]}
\]

and:

- \(u_x, u_z\): are the \((r,j)\) ball centre of mass displacement
- \(\delta(X)\): represent the local contact deformation at the inner ring level for the \((j)\) index
- \(\alpha(X)\): represent the inner contact angle of the ball inner ring contact
- \(b_x, b_y, b_z\) refers to the "ORR" or "IRR" case respectively.

\[
F_x(X) = \sum_i K_i \delta_i(X)^{1.5} \cos(\alpha_i(X)) \cos(\psi(r,j))
\]

\[
F_y(X) = \sum_i K_i \delta_i(X)^{1.5} \cos(\alpha_i(X)) \sin(\psi(r,j))
\]

\[
F_z(X) = \sum_i K_i \delta_i(X)^{1.5} \sin(\alpha_i(X))
\]

4. CONCLUSIONS.

The proposed mathematical model shows the differences between the ORR and IRR cases. The boundary conditions modify bearing rigidity and load distribution.

REFERENCES